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Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential

operational benefits of someadvanced concepts in theNextGenerationAirTransportation System.Analgorithm that

dynamically adjusts modeled aircraft weights based on observed track data to improve the accuracy of trajectory

predictions for climbing flights has been developed. In real-time evaluationwith actual FortWorthCenter traffic, the

algorithm decreased the altitude root-mean-square error by about 20%. It also reduced the root-mean-square error

of predicted time at top of climb by the same amount.

Nomenclature

D = drag, lb
_Emodel = modeled energy rate
_Eobs = observed energy rate
g = acceleration of gravity, ft∕s2
h = altitude, ft
hpred = predicted altitude, ft
htrack = radar track altitude, ft
_h = vertical rate, ft∕s
L = lift, lb
m = aircraft mass
T = engine thrust, lb
t = time, s
VT = true airspeed, kt
W = aircraft weight, lb
Wl = horizontal wind magnitude, kt

Δ _E = energy rate difference, _Eobs − _Emodel

γa = air-relative flight-path angle, deg
ψ i = inertial heading, deg
ψ rel = relative wind angle, ψ i − ψw, deg
ψw = wind direction, deg

I. Introduction

A IR traffic demand is expected to more than double over the next
20 years [1], but air traffic controller workload limits airspace

capacity. As such, it is expected that higher levels of automation for
separation assurance are needed to accommodate future demand

growth. Trajectory prediction error has been shown to be a major
limiting factor on the level of safety and efficiency that can be
provided by such automation. For instance, previous research found
an unacceptable number of late and missed conflict detections that
were caused by errors in climb trajectory predictions [2–4]. This is
due to the wide range of error sources [5–7] and their respective
magnitudes in current operations [8–10].
Researchers have investigated a variety ofmethods to reduce climb

trajectory prediction errors, including the use of airline flight-
planning data [8] and real-time air-to-ground data link of flight
parameters [9]. In the first study, the author provided two examples
where the use of estimated aircraft gross takeoff weight data from
Airline Operations Centers resulted in more accurate climb
predictions. However, the author also states that the predictions for
some flights actually became less accurate possibly due to errors in
aircraft thrust performancemodels. Since the aggregated results were
not reported, it is not clear how much improvement can be expected
for climbing flights in general. In the second study, the use of flight
parameters such as aircraft weight and climb speed intent acquired
via air-to-ground data link reduced the mean altitude error for
climbing flights in half. On the other hand, this result was based on
just twenty Boeing 777 flights that were specifically selected for the
analysis because large errors were observed in their flight parameters.
As such, it is not clear that the same level of improvement would be
realized for the full range of aircraft types and climb profiles that are
present in current operations.
Researchers have also studied the reductions in top-of-climb time

prediction error that can be achieved by using historical data to refine
the modeled thrust and climb calibrated airspeed (CAS) parameters
used by a trajectory predictor [10]. In this study, the authors analyzed
136 MD-80 (McDonnell-Douglas) flights using their own nor-
malized figure ofmerit based on the difference between predicted and
actual time at top of climb. Although their approach improved this
particular metric of top-of-climb accuracy by about 50%, the authors
did not analyze the accuracy of the rest of the trajectory prediction
before top of climb. In addition, since the scope of their analysis was
limited toMD-80 flights, it is not clear that this level of improvement
can be expected for all aircraft types and climb profiles in general.
The adaptive weight algorithm presented in this paper is a more

general approach that improves climb trajectory prediction accuracy
in real time. It does so by dynamically adjusting the modeled aircraft
weight for each individual climbing flight using only the radar track
and weather data available today. It does not require any additional
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data from Airline Operations Centers or aircraft unlike previously
investigated approaches [8,9]. Also, since it is derived from the point-
mass equations of motion and is applied on a per-flight basis, it is
more flexible than the method that applies the same statistical model
of engine thrust and climb CAS to all flights of the same aircraft type
[10]. The adaptiveweight algorithmwas prototyped in prior research
using fast-time simulations [11], but this paper extends that work by
implementing and fine-tuning the algorithm in a real-time system and
evaluating its performance with actual Fort Worth Center traffic. No
aircraft types or climb profiles were intentionally excluded from the
analysis.
It should be emphasized that the objective of this algorithm is not to

estimate actual aircraftweight [12] or fuel burn [13]. In fact, due to the
wide range of sources of uncertainty that cause climb trajectory
prediction errors, the algorithm may move the modeled aircraft
weight away from the true aircraftweight. Rather, the algorithm seeks
to adjust the modeled weight such that the resulting climb trajectory
prediction more closely matches observed track data in general.
Adjusting the aircraft weight parameter exclusively will not be
sufficient to fully compensate for all sources of climb uncertainty,
and the resulting trajectory predictions will never perfectly match
subsequent track data. Nevertheless, the use of the adaptive weight
algorithm presented here is still expected to improve overall climb
trajectory prediction accuracy.
Comparable adaptive thrust approaches have been developed with

this same philosophy and were shown to improve climb trajectory
prediction accuracy for several flights [14,15]. However, the adaptive
weight approach is preferred because engine thrust is computed using
altitude data (among other things) that are discretized in 100-ft
increments. Also, within any 12 s track update period, individual
ground stations may receive different altitude data from the same
flight at different times. Since the data from exact one of these ground
stations is selected at each track update and the data source used will
vary over time, adjusting themodeled thrust ismost likely less precise
than adjusting the modeled aircraft weight, which is an independent
parameter.
The remainder of this paper is organized as follows. The next sec-

tion provides background research on altitude trajectory prediction
errors for climbing flights relative to the current legal vertical
separation standard of 1000 ft. Following that is a section with a
detailed derivation and description of the adaptive weight algorithm
starting from a simplified form of the point-mass aircraft equations of
motion [16]. The section after that contains the results of fast-time
simulations using the Airspace Concept Evaluation System (ACES)
[17] that establish proof-of-concept for the algorithm. Then, the
following section presents the improvements in climb trajectory
prediction accuracy that were achieved by the algorithm for actual
Fort Worth Center traffic data in the Center/TRACON Automation
System (CTAS) [3,18]. Several possible means of enhancing and
extending the algorithm in the future are discussed afterwards. Lastly,
the findings of this research are summarized.

II. Background

The accuracy of a high-fidelity real-time trajectory predictor for
climbing departures in Fort Worth Center was analyzed using actual
traffic data from 14 days in February 2008 [3]. The CTAS Trajectory
Synthesizer generated trajectory predictions using enroute Center
Host flight plan and radar track data and atmospheric condition
forecasts (e.g., wind, temperature) from the National Oceanic and
Atmospheric Administration Rapid Update Cycle model. The
altitude errors for these trajectory predictions were computed as a
function of look-ahead time t using Eq. (1) by comparing them to
radar track data:

herror�t� � hpred�t� − htrack�t� (1)

Figure 1 illustrates this calculation for an actual climbing flight in
FortWorthCenter. In this case, the altitude prediction error for a look-
ahead time of 5 min is �1763 ft because the predicted altitude was
26,763 ft while the actual radar track altitude was 25,000 ft. The

along-track and cross-track errors were also computed in the earlier
study [3], but those results are not presented or discussed here
because the adaptive weight algorithm primarily improves trajectory
prediction accuracy in the vertical dimension with minimal effect on
horizontal prediction.
The analysis focused on the trajectory predictions generated at the

first track above 18,000 ft. This criterion was chosen to allow flights
about 4 min to achieve a steady climb speed following the speed
restriction of 250 kt at 10,000 ft (assuming a nominal vertical rate of
2000 ft∕min). In addition, this analysis only included uninterrupted
climbing flights that did not have flight plan amendments or
nonclimb segments between 18,000 ft and their flight plan cruise
altitude. This was done to isolate the analysis from the effects of
controller intervention as much as possible.
The altitude trajectory prediction errors for over 1000 flights were

calculated in this analysis. Figure 2 is a histogram of these errors for a
prediction look-ahead time of 5 min. Note that the root-mean-square
error is greater than two times the current legal vertical separation
standard of 1000 ft. In fact, it is more than 1000 ft for all look-ahead
times greater than 1 min (see Fig. 3). Furthermore, the percentage of
flights with altitude error greater than 1000 ft is over 50% for look-
ahead times beyond 3 min (see Fig. 4). Similar analysis of the
trajectory predictors used in the Federal Aviation Administration’s
User Request Evaluation Tool and EnRoute AutomationModerniza-
tion found comparable levels of altitude trajectory prediction errors
[19]. This indicates that improvements in trajectory prediction
accuracy for climbing flights may be necessary to realize higher
levels of automation for separation assurance to increase the capacity
of the Next Generation Air Transportation System (NextGen).

Fig. 1 Altitude trajectory prediction error calculation example.

altitude trajectory prediction error (ft) 
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Fig. 2 Altitude trajectory prediction errors (5-min prediction look-
ahead time).
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III. Adaptive Weight Algorithm Description

A. General Concept

The adaptiveweight algorithm uses observed track data to improve
climb trajectory predictions by dynamically adjusting the modeled
aircraft weight on a per-flight basis. Weight is one type of parameter
in the sets of aircraft performance models used in CTAS and ACES,
respectively, that include an aerodynamic model (lift and drag data)
and an engine model (thrust data). The kinetic trajectory calculations
in both systems use this information in the point-mass equations of
motion.
The algorithm uses the trajectory predictor’s nominal modeled

aircraft weight as a starting point for each individual flight. Then,
each time a radar track update is received, the algorithm adjusts this
parameter based on the difference between an observed energy rate
computed using the track data and a modeled energy rate calculated
from the aircraft performance model parameters used by the trajec-
tory predictor for that flight. These energy rates represent the overall
rates of change in kinetic and potential energy. If the observed energy
rate is greater than the modeled energy rate, the algorithm will
decrease the modeled aircraft weight for this particular flight.
Conversely, if the opposite is true, then the modeled aircraft weight
will instead be increased to reduce the energy rate difference. The
updated modeled aircraft weight parameter is used to compute
trajectory predictions for this flight until the next iteration of the
algorithm when new radar track data is received. A high-level
overview of the algorithm is illustrated in Fig. 5.

B. Derivation

The adaptiveweight algorithm adjusts the modeled aircraft weight
parameter based on the difference between an observed energy rate,
_Eobs, and a modeled energy rate, _Emodel, both of which are derived
from a simplified form of the point-mass equations of motion [16]:

_VT �
T −D
m

− g · γa −
d�Wl · cos ψ rel�

dt
(2)

L � W � mg (3)

_h � VT · sin γa (4)

Dividing both sides of Eq. (2) by g, substituting in Eq. (3), and
rearranging the terms such that the left-hand side only consists of
observable states and the right-hand side only has modeled aircraft
parameters results in a dimensionless form of Eq. (2):

1

g
· _VT � γa �

1

g
·
d�Wl · cos ψ rel�

dt
� T −D

W
(5)

The _VT in the first term on the left-hand side of Eq. (5) is rewritten
using the chain rule because estimates of _VT derived from current
radar track position data on a 12 s update rate are not sufficiently
precise:

_VT �
dVT
dt
� dVT

dh
·
dh

dt
� dVT

dh
· _h (6)

Substituting Eq. (6) into Eq. (5) leads to an alternative dimensionless
form of Eq. (5):

dVT
dh

·
_h

g
� γa �

1

g
·
d�Wl · cos ψ rel�

dt
� T −D

W
(7)

Equation (7) can be simplified further by applying a couple of
reasonable assumptions. The first is that the flight-path angle γa is
small (around three degrees for a nominal climb rate of 2000 ft∕min
and a nominal ground speed of 7.5 nmi∕min), which is true for
flights in actual operations. Then, sin γa ≈ γa by the small-angle
approximation, and Eq. (4) can be rewritten as

_h

VT
� γa (8)

The second assumption is that flights will follow a constant CAS-
constant Mach climb profile. If the algorithm is only enabled in the
constant CAS portion of the climb trajectory (roughly between
15,000 and 25,000 ft), then the rate of change in true airspeed with
respect to altitude is approximately constant for the range of CAS
values that are typically observed in current operations (around 250 to
350 kt). This constant value is calculated using the equation for CAS
[20] and the U.S. standard atmosphere (1976) model [21]:
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Fig. 3 Altitude root-mean-square error by prediction look-ahead time.
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Fig. 4 Percentage of climbing flights with altitude trajectory prediction
error greater than the current legal vertical separation standard of
1000 ft.

Fig. 5 High-level overview of the adaptive weight algorithm.
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dVT
dh
� 1.0126 s−1 (9)

Substituting Eqs. (8) and (9) into Eq. (7) leads to the final
dimensionless form of the energy rate equation:

�1.0126 s−1� ·
_h

g
�

_h

VT
� 1

g
·
d�Wl · cos ψ rel�

dt
� T −D

W
(10)

The left-hand side of Eq. (10) is the observed energy rate, and the
right-hand side is the modeled energy rate:

_Eobs � �1.0126 s−1� ·
_h

g
�

_h

VT
� 1

g
·
d�Wl · cos ψ rel�

dt
(11)

_Emodel �
T −D
W

(12)

The observed energy rate at the current time generally will not equal
the modeled energy rate computed using the current modeled values
for thrust (Tti ) and drag (Dti ) and the previously modeled aircraft
weight (Wti−1 ). This energy rate difference is defined as:

Δ _Eti � �1.0126 s−1� ·
_hti
g
�

_hti
�VT�ti

� 1

g
·

�
d�Wl · cos ψ rel�

dt

�
ti

−
Tti −Dti
Wti−1

(13)

One possible approach is to reduce the energy rate difference (Δ _Eti )
to zero by selecting a new aircraft weight (Wti ) such that the modeled
energy rate calculated using the current modeled values for thrust and
drag equals the current observed energy rate:

Wti∶
Tti −Dti
Wti

� �1.0126 s−1� ·
_hti
g
�

_hti
�VT�ti

� 1

g
·

�
d�Wl · cos ψ rel�

dt

�
ti

(14)

In theory, a single iteration of the algorithm using Eq. (14) could
result in a climb trajectory prediction that matches subsequent
observed track data if the only source of uncertainty were aircraft
weight. However, since there is also uncertainty in other aircraft
parameters such as thrust, drag, climb profile, and wind magnitude
and direction as well as noise in track data, this one-step approach
could lead to erratic adaptations. As such, a sensitivity parameter βti
was introduced to balance adaptation speed and stability. It is
especially important for adaptations to be steady because it could
otherwise lead to inconsistent trajectory predictions and unreliable
conflict predictions for climbing flights. To incorporate βti into the
algorithm, the energy rate difference defined in Eq. (13) was first
rewritten usingWti as defined in Eq. (14):

Tti −Dti
Wti−1

� Δ _Eti �
Tti −Dti
Wti

(15)

Equation (15) can then be divided on both sides by (Tti −Dti ) and
rearranged to isolate the updated modeled aircraft weight:

Wti �
�

1

Wti−1

�
Δ _Eti

Tti −Dti

�−1

(16)

The sensitivity parameter βti could be applied equivalently in several
locations in Eq. (16). For intuitive purposes, though, it was applied to
Δ _Eti because the energy rate difference is computed using imprecise
track data that varymore than the relatively stablemodeled thrust and
drag parameters used by the trajectory predictor:

Wti �
�

1

Wti−1

� βti ·
Δ _Eti

Tti −Dti

�−1

(17)

The functions for βti were developed through trial and error.
Originally, the algorithm used a fixed value for βti , and initial testing
showed considerable improvement in trajectory prediction accuracy
for climbing flights. Yet, closer investigation of outliers found that
some adaptations could have been faster while others needed to be
slower and more stable due to sudden “spikes” and “dips” in the
observed track data used by the algorithm. Equations (18) and (19)
are the end results of a limited refinement process in ACES and
CTAS:

ACES∶ βti �
(
max�0.205; βti−1 � 0.05� if i > 0;Δ _Eti > 0.0001;

���� Δ _Eti−Δ _Eavg

Δ _Eavg

���� < 3

0.05 otherwise

(18)

CTAS∶ βti �
(
max�0.10; βti−1 � 0.01� if i > 0;Δ _Eti > 0.0001;

���� Δ _Eti−Δ _Eavg

Δ _Eavg

���� < 0.5

0.05 otherwise

(19)

where Δ _Eavg �
P

5
j�1 Δ _Eti−j

5

Equations (18) and (19) are of the same form because the CTAS
version was derived from the ACES one, but there are differences
such as the respective ranges of values that βti can take on. For
example, the maximum possible value of βti is greater in ACES
(0.205) than CTAS (0.10). One reason is because track data in ACES
are stable and precise (e.g., altitude data have several decimal places),
which enabled more aggressive adaptations. On the other hand, the
minimum value of βti is higher in CTAS (0.05) than ACES (0.005).
This is because the real-world radar track data used inCTASare noisy
and the derived speed estimates are inevitably imprecise. As such,
more moderate adaptations over a longer period of time are more
effective overall in CTAS. Another possible contributing factor may
be the use of Cleveland Center traffic data in the ACES experiments
while FortWorth Center traffic datawere used inCTAS.Determining
optimal functions for βti that are different depending on aircraft
type, atmospheric conditions, and airspace among other factors is
nontrivial, but could significantly improve algorithm performance.
Two additional constraints were added to the algorithm during the

development process because the adaptedweight could still suddenly
jump or plunge even when previous adaptations were gradual and
steady. For example, consider the situation where β is large and there
is a sudden change in the vertical rate due to the imprecision of
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altitude data in the current system as previously discussed. As such,
one constraint limits the amount of adaptation in any single iteration
of the algorithm to a maximum of 1% of the most recent modeled
aircraft weight. The other limits the cumulative amount of adaptation
such that the modeled weight had to remain between 80 and 120% of
the nominal modeled aircraft weight in the ACES simulations (see
Sec. IV) and between 80 and 100% of the modeled maximum gross
takeoff weight in the CTAS experiments (see Sec. V). This also
reduces the possibility of trajectory prediction integration failures.

IV. Establishing Proof-of-Concept Through
Fast-Time Simulation

The adaptive weight algorithm was prototyped in fast-time
simulations using ACES [17]. ACES is a fast-time, gate-to-gate
simulation and modeling tool of the National Airspace System that
creates trajectories for aircraft using aircraft performance models
derived from the Base of Aircraft Data [22]. The primary purpose of
the ACES simulations was to establish proof-of-concept for the
adaptive weight algorithm. As such, it was evaluated using a 12 s
track update rate that mirrors that of current radar track data.
Furthermore, since it only adjusts the modeled aircraft weight, it was
sufficient to demonstrate its ability to improve climb trajectory
prediction accuracy in simulations where the only uncertainty was in
aircraft weight. Prior research analyzed its performance in simula-
tions with uncertainty in bothweight and climb speed schedule (CAS
andMach) [11], but similar analysis is not presented here because the
algorithm was also evaluated in the presence of real-world trajectory
prediction uncertainties using actual Fort Worth Center traffic (see
Sec. V).
The Cleveland Center traffic data set that was used to test the

adaptive weight algorithm contained about 600 departures. A
uniform distribution was used to apply a random amount of fuel
weight uncertainty between −50 and �50% to each flight in the
simulation. This range of fuel weight uncertainty roughly
corresponds with the �∕ − 15% variation in gross aircraft takeoff
weight that was observed in actual operations [8].
The terminology in Table 1 is used to describe and discuss the

results of the ACES simulations.

A. Weight Adaptation Accuracy

The first-order analysis of algorithm performance is a comparison
of the adapted and perturbed modeled weights to the actual weights.
Figure 6 contains plots of the root-mean-square error of the adapted
and perturbed weights relative to the actual weights as a function of
the amount of adaptation time (i.e., the amount of time since the first
track above 15,000 ft). Note that the plot for the “no adaptation”
(perturbed) weights is almost but not exactly flat due to slight
differences in the fuel burn rates used to model flights and their
perturbed trajectory predictions in the simulation (see solid curve).
By comparison, the difference between the adapted and actual
weights steadily decreases toward zero (see dashed curve). However,
the algorithm does not reduce these errors all the way down to zero
because of the sensitivity parameter β that balances adaptation speed
and stability as discussed in Sec. III. Still, with improvements on the
order of 75%, this high-level first-order analysis indicates that the
adaptive weight algorithm is generally successful in terms of weight
adaptation accuracy.

B. Climb Trajectory Prediction Accuracy

The promising results of the first-order weight error analysis imply
that the adaptive weight algorithm will also significantly improve
climb trajectory prediction accuracy. As expected, this turns out to be
the case throughout the climb phase. First, consider Figs. 7 and 8,
which are histograms of altitude error on a 5-min prediction look-
ahead time for climb trajectory predictions made at the first track
above 18,000 ft. Recall that the algorithmwas first enabled at the first
track above 15,000 ft and, thus, had only been working for around 1
or 2 min. Still, it was able to reduce the root-mean-square error by
nearly 50%.
Similar improvements in climb trajectory prediction accuracy

were also observed across prediction look-ahead times and at
different altitudes throughout the climb phase as well. For example,
Fig. 9 is a plot of altitude root-mean-square error as a function of
prediction look-ahead time for trajectory predictions made at the first
track above 18,000 ft. Note how the algorithm reduced trajectory
prediction errors at all look-ahead times. A similar plot for trajectory
predictions generated at the first track above 24,000 ft (see Fig. 10)
illustrates how it also continued to enhance this level of improvement
throughout the climb phase of flight.

Table 1 Terminology for ACES simulations

Term Definition

Actual weight Gross aircraft weight of simulated aircraft
Adapted weight Modeled gross aircraft weight using the adaptive weight algorithm
Adapted trajectory Trajectory prediction computed using the adapted weight
Perturbed weight Modeled gross aircraft weight with weight uncertainty applied
Perturbed trajectory Trajectory prediction computed using the perturbed weight

altitude trajectory prediction error (ft) 
-3000  3000 2000  -2000     0 

0

200 

 #
 f

lig
ht

s 

Mean: -10 ft
RMSE: 898 ft
Sample: 574 flights 

  -1000 1000 

100 

Fig. 7 Altitude errors for trajectory predictions in ACES without
adaptation (5-min look-ahead time).

Fig. 6 Root-mean-square error in modeled aircraft weights relative to
actual weights.
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V. Evaluation with Actual Flights in Fort Worth Center

The next step in the validation process for the adaptive weight
algorithm was to evaluate its performance in the presence of real-
world uncertainties. This was done using CTAS, a real-time research
prototype system developed at NASA that includes mature capabil-
ities for four-dimensional trajectory prediction, conflict detection,
conflict resolution, and other functions [3,18]. Trajectory predictions
were generated using the CTAS Trajectory Synthesizer with and

without the algorithm enabled using Fort Worth Center Host track
data and National Oceanic and Atmospheric Administration
Rapid Update Cycle atmospheric data. Data from 29 November–
1 December 2011 were used to exercise and fine-tune the algorithm
(see Sec. III). Then, weekday data from five days from the following
week (5–7 December and 12–13 December 2011) were used to
evaluate its performance. Only the results for climbing flights from
the latter test set are presented in this section. Unfortunately, several
weekdays in-between were not part of this analysis because the data
from those days were incomplete (e.g., missing weather data).

A. Climb Trajectory Prediction Accuracy

The performance of the adaptive weight algorithm was evaluated
in terms of climb trajectory prediction accuracy using the same
method described in Sec. II. More specifically, the trajectory
prediction errors for a flight were calculated only if it did not have any
flight plan amendments or nonclimb segments between the time the
trajectory prediction was made and the time its flight plan cruise
altitude was attained. Recall that this was done to isolate the analysis
from the effects of controller intervention as much as possible.
Aggregate-level improvement in climb trajectory prediction

accuracy can be seen by comparing the histograms of altitude errors
for the nominal and adapted trajectory predictions made at the first
track update above 18,000 ft (see Figs. 11 and 12, respectively). The
adaptive weight algorithm decreased the altitude root-mean-square
error by about 20% from 1946 ft in the nominal case to 1545 ft. It was
particularly successful at decreasing the number of flights at the tails
of the error distribution, especially on the positive side.
Similar improvements in trajectory prediction accuracy for

climbing flights were also observed more generally: 1) across
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Fig. 9 Altitude root-mean-square error for ACES trajectory
predictions generated at 18,000 ft.
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Fig. 10 Altitude root-mean-square error for ACES trajectory
predictions generated at 24,000 ft.
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Fig. 11 Altitude errors for trajectory predictions in CTAS without
adaptation (5-min look-ahead time).
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Fig. 12 Altitude errors for trajectory predictions in CTAS with
adaptation (5-min look-ahead time).
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prediction look-ahead times and 2) at different altitudes throughout
the climb phase. First, consider the plot of altitude root-mean-square
error as a function of prediction look-ahead time for trajectory
predictions made at the first track above 18,000 ft (see Fig. 13). As in
the ACES simulations, the algorithm also reduced these errors across
all prediction look-ahead times in the CTAS experiments. In fact, the
amount of improvement (both absolute and percentage-wise)
generally increased as a function of prediction look-ahead time. This
is significant because trajectory prediction errors do not necessarily
increase monotonically as a function of prediction look-ahead time
(see Sec. VI) due to the wide range of error sources [5–7] and their
respectivemagnitudes in current operations [8–10]. A similar plot for
trajectory predictions generated at the first track above 24,000 ft (see
Fig. 14) illustrates how the algorithm was able to maintain similar
improvement in trajectory prediction accuracy throughout climb.
Themagnitude of these errors implies that additional improvement

in climb trajectory prediction accuracy may still be necessary given
the current legal vertical separation limit of 1000 ft. As discussed in
Sec. VI, the quality of the input track data available today is a major
limiting factor on the amount of improvement that can be achieved by
the adaptive weight algorithm right now. However, this is not
expected to be the case in the near future in large part because the
Federal Aviation Administration (FAA) is mandating all aircraft
operating in transponder airspace to be equipped with Automatic
Dependent Surveillance-Broadcast (ADS-B) Out by 1 January 2020
[23]. Among other things, ADS-B Out will increase both the quality
and quantity of data that are communicated directly from aircraft and
also reduce the track update rate from12 s in the current system to just
1 s [24]. These improvements should enhance the effectiveness of the
adaptations and the accuracy of the resulting climb trajectory

predictions.With this in mind, the results presented here indicate that
the adaptive weight algorithm is a promising approach that could be
used as a foundation to improve trajectory prediction accuracy for
climbing flights to the extent needed for higher levels of automation
for separation assurance to increase the capacity of NextGen.

B. Top-of-Climb Prediction Accuracy

The promising results from the altitude trajectory error analysis
also imply similar improvements in top-of-climb prediction
accuracy. As expected, this turns out to be the case throughout
climb. First, consider histograms of top-of-climb time prediction
errors calculated using the nominal and adapted CTAS trajectory
predictions generated at the first track above 18,000 ft (see Figs. 15
and 16, respectively). These errors were calculated the same way as
the altitude errors in the previous section: predicted minus actual.
Here, the adaptive weight algorithm reduced the root-mean-square
error by 19%.
Similar improvements are observed for predictions made at the

first track above 21,000 ft (21%) and 24,000 ft (20%), respectively
(see Fig. 17). This is important because air traffic controllers often
require reliable predictions of climbs to different altitudes when
developing maneuvers to maintain safe separation of aircraft.

VI. Discussion

The evaluation of the adaptive weight algorithm using actual Fort
Worth Center data demonstrated its ability to reduce altitude and top-
of-climb time prediction errors for actual climbing flights at an
aggregate level. However, a closer examination of individual flights
found that trajectory prediction accuracy was not improved for all
flights. For instance, although many flights had adapted trajectory
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Fig. 13 Altitude root-mean-square error for CTAS trajectory
predictions generated at 18,000 ft.
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Fig. 14 Altitude root-mean-square error for CTAS trajectory
predictions generated at 24,000 ft.
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Fig. 15 Top-of-climb time error for trajectory predictions in CTAS

without adaptation.
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Fig. 16 Top-of-climb time error for trajectorypredictions inCTASwith
adaptation.
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predictions that were more accurate across all look-ahead times,
otherswere less accurate some or all of the time. Several examples are
illustrated and analyzed in the next section. Following that is a
discussion of possible improvements to position, velocity, and climb
profile data that would enhance algorithm performance.

A. Algorithm Performance for Individual Flights

The adaptive weight algorithm would ideally improve trajectory
prediction accuracy for all climbing flights for all prediction look-
ahead times as in Fig. 18. In this case, it correctly decreased the
modeled aircraft weight from the start of the algorithm at the first
track above 15,000 ft. The result is an adapted trajectory prediction
(dashed curve) with a lower vertical rate that is closer to the actual
track data than the nominal trajectory prediction (solid curve) across
all look-ahead times.
This type of consistent improvement in trajectory prediction

accuracy across all prediction look-ahead times is unfortunately not
observed for all climbing flights. Consider the case illustrated in
Fig. 19 in which the adapted trajectory prediction was more accurate
for some look-ahead times and less accurate for others. Here, the
algorithm decreased the modeled weight, which resulted in an
adapted trajectory prediction that starts off with a lower vertical rate
that is noticeably closer to the actual track data than the nominal
trajectory prediction. However, due to climb profile uncertainty, the
actual flight starts climbing at a faster rate at around the 5 min mark
than what was modeled by both trajectory predictions. It just so
happens that the actual flight eventually catches up to the nominal
trajectory prediction, and starting around the 10 min mark the
nominal prediction actually has smaller (absolute) errors than the
adapted prediction.

There were also some cases where the adapted trajectory
prediction was strictly less accurate than the nominal trajectory
prediction. One such example is illustrated in Fig. 20a. In this case,
the algorithm initially increased themodeled aircraft weight based on
track data that indicated a relatively slow vertical rate of about
1500 ft∕min. Soon after this trajectory prediction was generated at
18,000 ft, though, the actual flight started climbing faster with a
vertical rate of about 2500 ft∕min. As a result, this adapted trajectory
prediction was less accurate than the nominal trajectory prediction
across all look-ahead times. However, as the actual flight accelerated,

Fig. 17 Top-of-climb time prediction error for trajectories generated at
different altitudes in CTAS.
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Fig. 18 Example of adapted trajectory prediction that is strictly more
accurate for all look-ahead times.

Fig. 19 Example of adapted trajectory prediction that is more accurate
for some look-ahead times.
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Fig. 20 Example of flight with adapted trajectory predictions that are
a) strictly less accurate at first, but adjusts over time to b) match actual
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22 THIPPHAVONG ETAL.

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Fe

br
ua

ry
 1

6,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
85

08
 

http://arc.aiaa.org/action/showImage?doi=10.2514/1.58508&iName=master.img-020.jpg&w=221&h=156
http://arc.aiaa.org/action/showImage?doi=10.2514/1.58508&iName=master.img-023.jpg&w=215&h=161


the algorithm reversed itself and decreased the modeled aircraft
weight instead. As illustrated in Fig. 20b, the adapted prediction for
this flight eventually matched the actual track data just like the
nominal prediction.
As expected, adjusting only the modeled aircraft weight was not

sufficient to fully compensate for all sources of climbuncertainty, and
the resulting trajectory predictions never exactly matched the radar
track data. Among other things, the quality of the track data available
today is a major limiting factor on the amount of improvement that
can be achieved with the adaptive weight algorithm right now. In the
future, though, ADS-B Out is expected to enhance the performance
of the algorithm.

B. Automatic Dependent Surveillance-Broadcast Out

The Federal Aviation Administration’s mandate that all aircraft
operating in transponder airspace be equipped with ADS-B Out by
1 January 2020 [23] will significantly enhance the track data
available to the adaptive weight algorithm. This is expected to
improve the quality of the adaptations and the accuracy of the
resulting trajectory predictions for climbing flights. Among other
things,ADS-BOutwill provide 1 s updates of horizontal velocity and
vertical rate directly from aircraft [24] that are more accurate than
what can be computed currently using 12 s radar track updates for the
algorithm. Furthermore, estimates of aircraft acceleration ( _VT)
should also be more precise, which could allow the algorithm to be
extended beyond the constant CAS portion of climb.
Improving the quality of the vertical rate data may be the most

important for the algorithm since it is present in two of the three terms
of the observed energy rate Eq. (11). Recall that altitude data are
currently discretized in 100-ft increments. Also, within any 12 s track
update period, individual ground stations may receive different
altitude data from the same flight at different times. The data from
exactly one of these ground stations is selected at each track update,
and the exact data source used will vary over time. The resulting
inconsistency is detrimental to the quality of the vertical rate esti-
mates that can be derived. By contrast, with ADS-BOut, vertical rate
data would be sent directly from aircraft and should be more precise
than current estimates derived from altitude data. As such, although
the improvement in climb trajectory prediction accuracy achieved by
the adaptive weight algorithm using currently available data is
promising, ADS-B Out should further enhance its performance.

C. Climb Profile Data

Improvements to the modeled climb profile are also needed to
complement the expected enhancements in track data quality. This is
because the algorithm adjusts the modeled weight based on the most
recent track data with the implicit assumption that the actual flight
will fly according to the climb profile in the underlying aircraft
trajectory prediction model. If this does not hold, then the adapted
climb trajectories may be more accurate for shorter look-ahead times
of up to a few minutes, but less accurate for longer look-ahead times
(or vice versa). Two examples were illustrated in Figs. 19 and 20. As
such, up-to-date climb profile data — especially climb speed
schedule (e.g., vertical rate, or CAS and Mach) — should be dis-
closed for each flight (possibly as part of the filed flight plan, flight
plan amendments, and/or ADS-B Out broadcasts). This would likely
facilitate the expansion of the algorithm to a greater portion of the
climb phase. Otherwise, follow-on research efforts to develop
methods to infer climb profile on a per-flight basis in real time and/or
statistical models based on historical data as in prior work [10] are
needed.

D. General Applicability of the Algorithm

The adaptive weight algorithm presented in this study was
evaluated in fast-time simulations using ACES and with actual Fort
Worth Center traffic data in CTAS. However, since it was derived
from (a simplified form of) the point-mass equations of motion [16],
it is expected to be flexible enough to handle new aircraft types that
are not present in current operations. For this same reason, it should
also improve climb trajectory prediction accuracy in any airspace

and for any trajectory predictor that uses kinetic models (given
some fine-tuning of the parameters). Follow-on work to evaluate
its performance in all Centers of the National Airspace System is
underway.

VII. Conclusions

An algorithm that improves the accuracy of trajectory predictions
of climbing aircraft has been developed. It dynamically adjusts
modeled aircraft weights on a per-flight basis to adapt these predic-
tions to more closely match observed track data. Evaluation using
actual FortWorthCenter data showed that it reduced both altitude and
top-of-climb time prediction errors by about 20%. It should be
emphasized the algorithm only uses the radar track and weather data
available today and does not require any additional data from Airline
Operations Centers or aircraft. Furthermore, no aircraft types or
climb profiles were specifically excluded in the analysis. Improve-
ments to both the quality and quantity of the input data to the
algorithm in the near future are expected to further enhance algorithm
performance. Regardless, this study has demonstrated that the
adaptive weight algorithm is an approach that can be used as a
foundation to improve climb trajectory prediction accuracy to the
extent necessary for higher levels of separation assurance automation
to increase the capacity of the Next Generation Air Transportation
System.
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